Server-Assisted Generation of a Strong Secret from a Password

Warwick Ford, VeriSign, Inc.

(Joint research with Burt Kaliski, RSA Laboratories)

Requirement

- User who roams between client terminals needs to
 - ® obtain private key or data
 - strongly authenticate to application servers
- No local stored state
- No smartcards
- Private data downloaded from online credentials server

Traditional Credentials Server Solution

- Surveyed in Perlman & Kaufman, NDSS '99
 - ® Examples EKE, SPEKE
- Protocol exposes no information about private data
- > Throttling/lockout:
 - ® Limits password guessing
 - Makes friendly passwords possible
 - Based on failed password authentications

Weakness in Traditional Design

- > If server compromised, attacker can potentially:
 - Attack credentials database, e.g., password verifiers by exhaustive attack (even if passwords not determinable directly)
 - ® Disable throttling/lockout and exhaustively attack with password guesses
- Vulnerable to password attack
- Password exposure means private data exposure
- Many users may be compromised in one attack

Solution - Multiple Servers

- Objective: Compromise of one server exposes neither private data nor password
- Not as easy as it looks
 - Ordinary secret-sharing not adequate if servers have to verify passwords

Basic Approach

- Client generates strong master secret K via interaction with two or more servers
- Client proves successful regeneration of K to all servers
- K can unlock encrypted private data or facilitate authentication to other servers
- No server can learn K or password

In More Detail...

- Pre-knowledge
 - War User knows password P
 - \bullet Each server S_i holds its own secret d_i for that user
 - \bullet Each S_i also holds its own strong verifier K_i for K
- Client generates strong master secret K
 - \bullet For each S_i , client computes strong secret R_i
 - via a password hardening transaction depending on P and d_i
 - subject to throttling/lockout
- Client proves successful regeneration of K to servers
 - ullet For each server S_i generates strong verifier K_i from K
 - Demonstrates knowledge of K_i to server S_i
- K can unlock encrypted private data or facilitate authentication to other servers

Secret-Strengthening Protocol

> Properties:

- R₁ is a strong secret
- © Observer cannot feasibly learn R_1 , d_1 or P
- $_{ t ext{ iny S}}$ Server cannot feasibly learn $R_{ t 1}$ [or P ?]
- Same R₁ always generated for same P

Do It with Two Servers

- K is a strong secret
- Observer cannot feasibly learn K or P
- Neither server can feasibly learn K or P
- Same K always generated for same P
- Both servers need to cooperate for K to be generated

Now Prove It was Successful

- Each server gets proof that client knows K
- ® Server's knowledge of K_i does not feasibly assist determining K (or password)

Some Variants

- Other secret-strengthening protocols
 - ECC variant is obvious
 - RSA-based also exists
- Other verification methods
 - K decrypts a private digital signature key; signed nonce proves regeneration to server holding public key
- Use threshold functions in combining hardened passwords
- Use other functions of master secret to authenticate to other (application) servers

A Special Case Variant

- Client interacts with password hardening server
 S₁ to obtain R₁
- \triangleright Client uses T_1 derived from R_1 to authenticate to a second server S_2
- $\gt S_2$ confidentially delivers to client: secret K encrypted under T_2 derived from R_1
- Client decrypts K
- \triangleright Client verifies to S_1 by proving regeneration of K

Special Case Variant - Protocol

Properties:

- \circ Attractive when S_2 already exists (e.g., SSL or SPEKE server)
- Adding one password hardening server S₁ provides the requisite
 added strength

The Fundamental Characteristics

- Must recover a master secret using more than one independent server
 - ® all of which contribute to recovering the secret
 - ® all of which employ throttling/lockout
- At least one secret-contributing server must use secret-strengthening
- Must prove successful regeneration of a strong secret to at least two verification servers

Non-Repudiation Ramifications

- Single server design is weak wrt nonrepudiation
 - user can plausibly claim that insider/penetrator at the server recovered the private key and signed
- The multi-server design significantly improves non-repudiation
 - ® it is much harder to mount a plausible argument that independently controlled servers colluded
- But, claims of non-repudiability still rest on confidence that the client terminal is secure
 - there is no silver bullet for this concern

Summary of the Technology

- Traditional credentials server architecture is vulnerable to server compromise and exhaustive password guessing against stored password-derived values
 - Server vulnerability raises security concerns and kills non-repudiation
- Need multiple independent servers contributing to secret regeneration
 - ® Each must independently throttle/lockout
- Need password hardening as a basis of establishing strong secret from weak secret

Deployment Status

- Current-shipping VeriSign enterprise PKI offering includes the option:
 - ® Two-server secret-strengthening technology to support protection of private key plus arbitrary user data
 - Servers may be operated by Enterprise and/or VeriSign
- Alternative packagings (e.g., for SSO, Aggregation) in development

For More Information

See Ford/Kaliski WETICE 2000 paper at:

http://www.verisign.com/repository/pubs/roaming.pdf

Contact details:

Warwick Ford, VeriSign, Inc.

E-mail: wford@verisign.com

Tel: (781) 245 6996 x225

